B.Sc (Physics, Mathematics and Computer Science)

Fifth Semester

1.	Name of the Department	t: Mathematics							
2.	Course Name	Advanced Cal	culus				L	Т	Р
3.	Course Code	MT301					3	1	0
4.	Type of Course (use tick	mark)	Core	e (□)		DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)	10+2 with Mathematics	6.	Frequency tick marks)	(use	Even ()	Odd (□)	Either Sem ()	Every Sem ()
7.	Total Number of Lecture	es, Tutorials, Pr	actica	ls			- I	1	
Lee	ctures = 30			Tutorials =	10		Practical =	Nil	

8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of differential & integral calculus. Students will be able to evaluate derivative of several functions using different techniques. They will also learn to evaluate different types of integrals. After successful completion of course, the student will be able to explore subject into their respective dimensions.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Students will gain an understanding of Function of several variables, Domains and Range, Functional notation, Limits and continuity and differentiability. They will also learn to find Partial derivatives, Differential of functions of n variables, Differentials of composite functions by using the chain rule.
CO2	Students will be able to understand Implicit functions, Inverse functions, They will also study directional derivatives and will be able to find Partial derivatives of higher order, Higher derivatives of composite functions. They will learn to find Maxima and minima of functions of several variables.
CO3	Students will gain an understanding of Line integrals in the plane, Basic properties of Line integrals, Line integrals as integrals of vectors and will be able to solve line integral by Green's theorem, and get knowledge of independence of path, simply connected domains, Extension of result of multiply connected domains.
CO4	Students will create the own understanding and used to find Double integral over a rectangular region, Double integral as volume, Area of a region in a plane., Transformation of double integral from Cartesian to polar co-ordinate and vice versa. They will study triple integral and learn to solve them in Cartesian, cylindrical and spherical co – ordinate.
CO5	Students will gain an understanding of solution of Improper integrals, convergence of $\int_a^{\infty} f(x)dx$, Camparison test, convergence of $\int_a^{\infty} \frac{dx}{x^n}$, $a > 0$, Abel's test, Dirichlet's test, convergence of $\int_a^{\infty} \frac{dx}{(x-a)^n}$. They will also study convergence of beta and gamma functions.
10. Unit wise detailed co	ntent

10. Unit wise detailed content

Unit-1

Number of lectures = 08 Title of the unit:

Function of several variables, Domains and Range, Functional notation, Limits and continuity and differentiability, Partial derivatives, Differential of functions of n variables, Differentials of composite functions, chain rule.

Unit-2	Number of lectures =08	Title of the unit:
· ·	erse functions, The directional minima of functions of several va	derivatives, Partial derivatives of higher order, Higher derivatives of composite ariables.
Unit-3	Number of lectures = 08	Title of the unit:

Line integrals in the plane, Basic properties of Line integrals, Line integrals as integrals of vectors, Green's theorem, independence of path, simply connected domains, Extension of result of multiply connected domains.

Unit-4	Number of lectures = 08 Title of the unit:							
	gral over a rectangle region, Double integral as volume, Area of a region in a plane					doubl	le inte	gral from
Cartesian to	polar co - ordinate and vice versa, Triple integral in Cartesian, cylindrical and spher	ical c	o - oro	linate	•			
Unit-5	Number of lectures = 08 Title of the unit:							
Improper in	tegrals, convergence of $\int_a^{\infty} f(x) dx$, Camparison test, convergence of $\int_a^{\infty} \frac{dx}{x^n}$, $a > 0$, A	Abel's	test, 1	Dirich	nlet's	test,	conve	rgence of
	onvergence of beta and gamma functions.							
11. СО-РО	mapping							
COs	Attributes	PO1	PO2	PO3	PO	PO5	PO6	PO7
C01	Students will gain an understanding of Function of several variables, Domains and Range, Functional notation, Limits and continuity and differentiability. They will also learn to find Partial derivatives, Differential of functions of n variables, Differentials of composite functions by using the chain rule.	2	2	2	1	1	1	2

	Differentials of composite functions by using the chain rule.							
CO2	Students will be able to understand Implicit functions, Inverse functions, They will also study directional derivatives and will be able to find Partial derivatives of higher order, Higher derivatives of composite functions. They will learn to find Maxima and minima of functions of several variables.	3	2	2	1	1	1	2
CO3	Students will gain an understanding of Line integrals in the plane, Basic properties of Line integrals, Line integrals as integrals of vectors and will be able to solve line integral by Green's theorem, and get knowledge of independence of path, simply connected domains, Extension of result of multiply connected domains.	3	2	2	1	1	1	2
CO4	Students will create the own understanding and used to find Double integral over a rectangular region, Double integral as volume, Area of a region in a plane., Transformation of double integral from Cartesian to polar co - ordinate and vice versa. They will study triple integral and learn to solve them in Cartesian , cylindrical and spherical co - ordinate	3	1	2	1	1	1	2
CO5	Students will gain an understanding of solution of Improper integrals, convergence of $\int_a^{\infty} f(x)dx$, Camparison test, convergence of $\int_a^{\infty} \frac{dx}{x^n}$, $a > 0$, Abel's test, Dirichlet's test, convergence of $\int_a^{\infty} \frac{dx}{(x-a)^n}$. They will also study convergence of beta and gamma functions.	3	1	2	1	1	1	2
	3 Strong contribution, 2 Average contribution, 1 Low contrib	ution	•	•	1			
	description of self learning / E-learning component							
	nptel.ac.in/courses/111107108/ :/Users/Admin/Downloads/Vector%20Calculus%20by%20Krishna%20Series.pdf							
3. https://v	www.academia.edu/8509213/Advanced_CalculusFifth_Edition-Wifred_Kaplan							
	s recommended:							
. G. B. Tl	nomas, M.D. Wier, J. Hass: Calculus, Pearsons Education.							

1. G. B. Thomas, M.D. Wier, J. Hass: Calculus, Pearsons Education.

2. S. C . Malik and S. Arora : Mathematical analysis, Wiley Eastern Ltd.

3. D. V. Widder: Advanced Calculus, Prentice Hall of India Pvt. Ltd.

1. Name of the	e Department: M	athematics					
2. Course Nai	me	Mathematical Statistic	es .		L	Т	Р
3. Course Coo	le	MT302			2	1	0
4. Type of Co	urse (use tick ma	rk)	Core (✓)	DE ()	FC ()		OE ()
5. Pre-requisi (if any)	te		6. Frequency (use tick	Even ()	Odd (✓)		Every Sem ()
7. Total Numl	ber of Lectures,	lutorials					
Lectures = 30	,		Tutorials = 10		Practical =	Nil	
8. COURSE O	BJECTIVES: T	he course explores the b		nodern stat			decision-making in
economics, busi	ness, and other fi	elds of sciences. Our ever Il techniques for quantifyi	yday lives, as well	as econom	nic and busine	ess activities, are	full of data analysis
	atistics and practic	1 1 7	-8			,	
9. COURSE OU'	TCOMES (CO):						
		tion, learners will develo	p following attribu	tes:			
COURSE OUT		ATTRIBUTES					
		To understand the definition	1		· •		1
CO	ן אר	Quantitative and qualita	· 1		•		-
		measurement- nominal, o					and graphical form
		including bar diagram, his					
		Able to solve Measures of					
CO		harmonic mean, quartiles					
		deviation, standard deviati	ion and variance, co	oefficient o	f variation and	d coefficient of s	kewness
		To understand Bivariate	data: Definition.	scatter dia	gram. Karl	Pearson's coeffic	cient of correlation
CO		Spearman coefficient rank			-		
				a raino. or	inpre inicui re	Brebbion, princip	ie of feast squares
		To understand Definitions	of Probability – cl	assical. stat	istical. and a	kiomatic, random	experiments.
CO		sample space and events, I					
		and Bayes' theorem					
		To understand Mathemat					
CO		function (pdf). Binomial Probability distributions.	Probability distr	ibutions, P	oisson Proba	ability distribution	ons, and Normal
10. Unit wise de		robability distributions.					
Unit-1		ber of lectures = 08	Title of the uni	t٠			
		es, concepts of statistical p			tative and ou	alitative data, pri	mary and secondary
	-	of measurement- nomina	-		-	-	
Unit-2		ber of lectures =08	Title of the unit				01
		thmetic mean, median, me			nonic mean, q	uartiles and perce	entiles. Measures of
	•	n, mean deviation, standar			· 1	1	
Unit-3	Num	ber of lectures = 08	Title of the unit	t :			
Bivariate data: D	efinition, scatter	diagram, Karl Pearson's d	coefficient of corre	elation Spea	arman coeffic	ient rank correla	tion and tied ranks.
Simple linear reg	ression, principle	of least squares					
Unit-4	Num	ber of lectures = 08	Title of the unit	+•			
		al, statistical, and axiomat			le space and e	events laws of ad	dition and
	•	conditional Probability ar	· 1	ience, sump	ie space and c		
Unit-5	Nun	ber of lectures = 08	Title of the unit	:			
		ility mass function (pmf)			ction (pdf). E	Binomial Probabi	lity distributions.
		nd Normal Probability dis		5	<i>u</i> , –		· ,
11. CO-PO map	ping						
COs		Attribute	S		PO1 P	O2 PO3 PO4	PO5 PO6 PO7
							_

To understand the definition and scope of Statistics, concepts of statistical population and sample. Quantitative and qualitative data, primary and
CO1 secondary sources of data collection, scales of measurement- nominal, ordinal, interval and ratio. Presentation of data: tabular and graphical form including bar diagram, histogram, pie chart, frequency curve and frequency polygon 2 2 2 2 2 2 2
CO2Able to solve Measures of Central Tendency: Arithmetic mean, median, mode, geometric mean and harmonic mean, quartiles and percentiles. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation and variance, coefficient of variation and coefficient of skewness3322232
CO3To understand Bivariate data: Definition, scatter diagram, Karl Pearson's coefficient of correlation Spearman coefficient rank correlation and tied ranks. Simple linear regression, principle of least squares223322
CO4To understand Definitions of Probability – classical, statistical, and axiomatic, random experiments, sample space and events, laws of addition and multiplication, independent events, conditional Probability and Bayes' theorem2223221
CO5To understand Mathematical expectation, Probability mass function (pmf) and Probability density function (pdf). Binomial Probability distributions, Poisson Probability distributions, and Normal Probability distributions.2323223
3 Strong contribution, 2 Average contribution, 1 Low contribution
12. Brief description of self learning / E-learning component
 <u>https://www.youtube.com/watch?v=b9e-Q-jC-0</u> <u>https://www.youtube.com/watch?v=bQ5_PPRPjG4</u> <u>https://www.youtube.com/watch?v=jauhoR7w1YM</u>
 13. Books recommended: 1. Sampling techniques: W.G. Cochran, Wiley 2. Sampling methodologies and applications: P.S.R.S. Rao, Chapman and Hall/CRC 2000 3. Elements of sampling theory and methods: Z. Govindrajalu, Prentice Hall, 1999
4. Sampling: P. Mukhopadhyaya, Prentice Hall of India, 1998.

5. Theory of sample surveys with applications: P.V.Sukhatme, B.V.Sukhatme, S. Sukhatme and C. Asok, IASRI, Delhi, 1984.

6. Sampling Techniques: Daroga Singh & Chaudhry, F.S New age International

2.	Course Name	Number Theory			L	Т	Р
3.	Course Code	MT303			2	1	0
4.	Type of Course (use tick ma	rk)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)	10+2 with PCM	6. Frequency (use tick		Odd (✓)	Either Sem ()	Every Sem ()
7.	Total Number of Lectures, T	lutorials		1	1		
Leo	ctures = 22		Tutorials = 10		Practical =	Nil	

the technical baggage often associated with a more advanced courses. The course provides students an opportunity to develop an appreciation of pure mathematics while engaged in the study of number theoretic results. The course is also designed to provide students an opportunity to work with conjectures, proofs, and analysing mathematics.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
C01	Can be able to demonstrate Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of equivalence of relation, Equivalence sets.

(CO2 Demonstrate knowledge and understanding of topics inclu numbers, congruence's, quadratic reciprocity, Diophantine	-					-	ardinal
(CO3 Can analyse hypotheses and conclusions of mathemati greatest common divisor, prime, and prime factorization	cal st	ateme	ents of	divisi	bility,	cong	ruence,
(CO4 Can apply different techniques of congruence to verify induction, by contrapositive and by contradiction	mathe	ematic	al asse	ertions	, inclu	iding p	proof by
(CO5 Can solve systems of Diophantine equations using the Chi algorithm and Lagrange's theorem	nese	Remai	inder T	heorei	n & tł	ne Euc	lidean
10. Unit wise d	etailed content							
Unit-1 Cartesian produ	Number of lectures = 08Title of the unit:ct of sets, Equivalence relation and partition, Fundamental theorem of equivalence	nce of	f relati	on, Eq	uivale	nce se	ts.	
Unit-2	Number of lectures =06 Title of the unit:							
Cardinal numbers	s, power of continuum, cardinal arithmetic, Inequalities in cardinals, Cantor's th	neorei	n, Sch	rodar l	Berntie	en The	orem	
Unit-3	Number of lectures = 06 Title of the unit:							
Division Algorit	thm, greatest common divisor, least common multiplier, prime number, unique	facto	risatio	n theor	em.			
Unit-4	Number of lectures = 06 Title of the unit:							
Congruence, Con	nplete residue theorem, Euler's theorem							
Unit-5	Number of lectures = 06 Title of the unit:							
Linear congruenc 11. CO-PO map	e, Chinese remainder theorem, problem based on Chinese remainder theorem, D ping	Lagra	nge's	theorei	n			
COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	Can be able to demonstrate Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of equivalence of relation, Equivalence sets.	3	1	1	1	2	3	3
CO2	Demonstrate knowledge and understanding of topics including, but not limited to divisibility, cardinal numbers, congruence's, quadratic reciprocity, Diophantine equations and cantor's theorem	3	2	1	1	2	1	3
CO3	Can analyse hypotheses and conclusions of mathematical statements of divisibility, congruence, greatest common divisor, prime, and prime		2	1	1	2	1	3
CO4	Can apply different techniques of congruence to verify mathematical assertions, including proof by induction, by contrapositive and by	1 2	2	2	1	1	1	1
CO5	Can solve systems of Diophantine equations using the Chinese Remainder Theorem & the Euclidean algorithm and Lagrange's theorem	3	2	1	1	2	1	3
	3 Strong contribution, 2 Average contribution, 1 Low cont	ributi	on	1	1	1	<u> </u>	
12. Brief descri	ption of self learning / E-learning component							
	v.youtube.com/watch?v=SCvtxjpVQms v.youtube.com/watch?v=-Qtl4nn7R4A							

	the Department:	Physics							
2. Course N	ame	Elements of Quantum	n Mechanics, Atomic	and	L		Т		Р
3. Course C	ode	PY301			3		1		0
4. Type of C	Course (use tick n	nark)	Core (√)	Foundatio	n Course () Depa	rtmenta	l Elec	tive
5. Pre-requ (if any)	isite	10+2 with Physics	6. Frequency (use tick marks)	Even ()	Odd (√	/	r Sem)		wery m ()
7. Total Nu		. Tutorials. Practicals	1						
	Lectures		Tutorials =			Practical			
introduce som to atomic syst	e of the basic sys	To provide working knowl tems in atomic physics. To							
After the succe	UTCOMES (CO <u>essful course com</u> DUTCOME (CO)	pletion. learners will develo		s: ATTRIBUTES					
	CO1	Would be able to ana the understanding of c						d prov	vide
	CO2	Provided with the way the expectation values	•	n students wou	ıld be able	to normaliz	e it and	determ	nine
	CO3	To solve the Schrodin an infinite potential w	nger's equation for ti					particle	e in
	CO4	It includes an underst numbers for labelling		coupling in ord	er to be ab	le to use app	propriate	e quant	um
	CO5	To analyze the origin calculations of energy		onal and rotati	onal energ	y levels and	underta	ke sim	ple
10. Unit wise	detailed content								
Unit-1		nber of lectures = 08	Title of the unit					~	
effect, Planck's	s quantum hypoth	ics, black body radiation, the nesis, development of quant e- Broglie waves, phase and	tum mechanics, Boh	n's quantizatio	on conditio	on, wave pa	rticle du	ality,	
Unit-2		nber of lectures =08							
oscillator Basi	e postulates of q	ble with derivation and its juantum mechanics, Schro tion, orthogonality and not	dinger Equation: tim	ne dependent	and time	independent	form,	Physic	al
Unit-3		nber of lectures = 08							
deep potential	well, 1-D linear h	ve equation: (free particle, a armonic oscillator, one dim dynamical quantities, mome	ensional motion in st	ep potential, re					
Unit-4		nber of lectures = 08	Title of the unit						
and f states, sel	ection rules, Singl	nd alkali atoms, spectral ter et and triplet fine structure i e on voltage, Duane and I	in alkaline earth spect	ra, L-S and J-J	couplings.	Weak spect	ra: conti	inuous	X-
screening parar		ectra, X-ray absorption spec							
Unit-5		mber of lectures = 08	Title of the unit				<u> </u>		
distance, pure i		ties of molecules, quantiza on- vibration spectra, Disso ration spectra.							
11. CO-PO ma		1							
COs	rr	Attributes		PO1	PO2	PO PO4	PO5	PO	P
						3		6	07
				·	· ·				

C01	Would be able to analyze the inadequacies of classical mechanics in atomic domain and provide the understanding of quantum theory of light in order to analyze Blackbody Radiation.	3	2	1	1
CO2	Provided with the wavefunction of a system students would be able to normalize it and determine the expectation values.	3	1	2	3
CO3	To solve the Schrodinger's equation for time independent problems like free particle, particle in an infinite potential well, square potential well, the step potential and potential barrier.	3	1	2	3
CO4	It includes an understanding of LS and JJ coupling in order to be able to use appropriate quantum numbers for labelling of energy levels.	3	1	2	3
CO5	To analyze the origin of electronic, vibrational and rotational energy levels and undertake simple calculations of energy levels.	3	1	2	3
	3: Strong contribution, 2: Average contribution, 1:	Low con	tribution		I
12. Brief des	cription of self learning / E-learning component				

13. Books recommended:

- 1. H. S. Mani and G. K. Mehta; "Introduction to Modern Physics" (Affiliated East- West Press 1989).
- 2. A. Beiser, "Perspectives of Modern Physics (McGraw Hill).
- 3. H. E. White; "Introduction to Atomic Physics (D. Van Nostrand Company)
- 4. Barrow; "Introduction to Molecular Physics (McGraw Hill).
- 5. R. P. Feymann, R. B. Leighton and M. Sands; "The Feynman Lectures on Physics, Vol. III (B I Publications. Bombay. Delhi, Calcutta, Madras).
- 6. T. A. Littlefield and N Thorley; "Atomic and Nuclear Physics" (Engineering Language Book Society).
- 7. Eisenberg and Resnick; "Quantum Physics of Atoms, 'Molecules, Solids, Nuclei and Particles" (John Wiley).

1. Name of the Department: Ph	ysics					
2. Course Name	Classical Mechanics	s, Relativity and	Statistica	l L	Т	Р
3. Course Code	PY302			3	1	0
4. Type of Course (use tick mar	k)	Core $()$	Founda	tion Course ()	Departmenta	l Elective
5. Pre-requisite	10+2 with Physics	6. Frequency	Even ()	Odd $()$	Either Sem	Every
(if any)		(use tick			0	Sem ()
7. Total Number of Lectures, T	· · · · · · · · · · · · · · · · · · ·	1				
Lectures = 3	0	Tutorials =	10	Р	ractical = Nil	
 8. COURSE OBJECTIVES: To formulation of mechanics and to gi 9. COURSE OUTCOMES (CO): After the successful course complete 	ve the students a thoroug	h understanding of th	e theory and	l methods of stati		
COURSE OUTCOME (CO)			TTRIBUT			
CO1	Students will gain an Lagrangian and Hamil		Classical M	echanics and bas	sic theories of Ph	ysics like
CO2	Students will be able of Relativity and conc			g of various pher	nomena of Speci	al Theory
CO3	Students will be able variables, expected va					, random
CO4	Students will be able various thermodynami		tion functio	n of various sys	tems and further	calculate
CO5	Interpretation of Maxy and Bose- statistics for		•	statistical mechan	nical description	of Fermi-

10. Unit	wise detailed content								
Unit-1	Number of lectures = 08 Title	e of the unit: Lagra	angian an	d Hamilt	tonian D	ynamic	s		
D'Alember variational	s: holonomic and non-holonomic, time independent and t's principle, velocity dependent potentials, Variationa principle, Lagrange equations using Hamilton's prin n and its physical significance, Hamilton's equations of n	al principle: Techni nciple, Generalized	ique of t momen	the calcu ta, cycli	ulus of	variatio	n, Han	nilton's	
Unit-2	Number of lectures =08								
	systems, inertial frames, Galilean invariance and conservation								
	ether, Postulates for the special theory of relativity, L eorem, variation of mass with velocity, mass-energy equiv					me dila	ation, v	elocity	
Unit-3	Number of lectures = 08								
	and thermodynamic probability, principle of equal a p number of particles.	priori probabilities, j	probabili	ty distrib	oution an	d its n	arrowin	ig with	
Unit-4		e of the unit: Some							
dimensiona)- space representation, division of μ (mu)- space into end al harmonic oscillator and free particles, Equilibrium entropy relation, Statistical interpretation of second law of	before two systems							
Unit-5		e of the unit: Quan							
between m Transition dimensiona	 n distribution of speeds in an ideal gas: Distribution of ean, r.m.s. and most probable speed values. to quantum statistics: 'h' as a natural constant and' in a harmonic oscillator, Indistinguishability of particles a black body chamber, free electrons in a metal, Fermi leve) mapping 	ts implications, case and its consequences	es of part	icle in a	one-dim	ensiona	al box a	and one	
COs	Attributes		PO1	PO2	PO3	PO	PO	PO6	P
CO1	Students will gain an understanding of the Classical Med theories of Physics like Lagrangian and Hamiltonian Dy		3	2	1	1	5	1	2
CO2	Students will be able to develop a deep understan phenomena of Special Theory of Relativity and concep equivalence.		3	2	1	1		1	2
CO3	Students will be able to master basic statistical method like probability, random variables, expected value, var and common probability distributions.		3	1	1				1
CO4	Students will be able to write the distribution function of and further calculate various thermodynamic potentials.	f various systems	3	1				2	1
CO5	Interpretation of Maxwellian distribution. Analysi mechanical description of Fermi- and Bose- statistics photon.		3						2
	3: Strong contribution, 2: Average	e contribution , 1: I	Low cont	ribution	l		1		
12. Brief	description of self learning / E-learning component								
	and the second								
1. A. B. 2. B. B. 3. F. Re	s recommended: eiser, "Concepts of Modern Physics" (McGraw-Hill). Laud, "Introduction to Statistical Mechanics" (Macmillan if, "Statistical Physics" (McGraw-Hill 1988). aung, "Statistical Physics" (Wiley Eastern, 1988).	n 1981).							

K. Haung, "Statistical Physics" (Wiley Eastern, 1988).
 H. Goldstein, "Classical Mechanics, 2nd Edition (Narosa).

7. Total Number of Lectures, Tutorials, Practicals Tutorials = 10 Practical = Nil 8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nucle particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions 9. COURSE OUTCOMES (CO): After the successful course completion. learners will develon following attributes: COURSE OUTCOMES (CO): After the successful course completion. learners will develon following attributes: COURSE OUTCOMES (CO): After the successful course completion. learners will develon following attributes:	P 0 ective Every Sem ()
4. Type of Course (use tick mark) Core (√) Foundation Course () Departmental E 5. Pre-requisite (if any) 10+2 with Physics 6. Frequency (use tick Even () Odd (√) Either Sem () 7. Total Number of Lectures, Tutorials, Practicals 10+2 Image: Course () Practical = Nil 8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nucle particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions 9. COURSE OUTCOMES (CO): After the successful course completion. learners will develon following attributes: COURSE OUTCOME (CO)	ective Every
5. Pre-requisite (if any) 10+2 with Physics 6. Frequency (use tick Even () Odd (√) Either Sem () 7. Total Number of Lectures, Tutorials, Practicals Lectures = 30 Tutorials = 10 Practical = Nil 8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nucle particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions 9. COURSE OUTCOMES (CO): After the successful course completion. learners will develop following attributes: COURSE OUTCOME (CO)	Every
(if any) (use tick () 7. Total Number of Lectures, Tutorials, Practicals () Interview of Lectures, Tutorials, Practicals Lectures = 30 Tutorials = 10 Practical = Nil 8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nucle particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions 9. COURSE OUTCOMES (CO): After the successful course completion. learners will develop following attributes: COURSE OUTCOME (CO) ATTRIBUTES	•
7. Total Number of Lectures, Tutorials, Practicals Interview of Lectures, Tutorials, Practicals Lectures = 30 Tutorials = 10 Practical = Nil 8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nucle particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions 9. COURSE OUTCOMES (CO): After the successful course completion. learners will develon following attributes: COURSE OUTCOME (CO) ATTRIBUTES	Sem ()
Lectures = 30Tutorials = 10Practical = Nil8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nucle particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions9. COURSE OUTCOMES (CO): After the successful course completion. learners will develop following attributes: COURSE OUTCOME (CO)	
 8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of solid state, nucle particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions 9. COURSE OUTCOMES (CO): After the successful course completion. learners will develon following attributes: COURSE OUTCOME (CO) ATTRIBUTES 	1
particle physics. By using the principal of physics and mathematics to obtain quantitative relations which are very important for studies. After successfully completion of course, the student will able explore subject into their respective dimensions 9. COURSE OUTCOMES (CO): After the successful course completion. learners will develon following attributes: COURSE OUTCOME (CO) After the successful course completion. learners will develon following attributes: COURSE OUTCOME (CO)	
After the successful course completion. learners will develop following attributes: COURSE OUTCOME (CO) ATTRIBUTES	
COURSE OUTCOME (CO) ATTRIBUTES	
CO1 Students will gain an understanding of crystal structure, diffraction and reciprocal lattice help in determine the crystal structure of any material.	which
CO2 Students will gain an understanding of crystal bonding and the vibrations involved in a Lattice which help them to understand the concept of vibrational dynamics.	rystal
CO3 Students will gain an understanding of materials (metals and semiconductors) and able to fi band gap based on which they define the material type.	nd the
CO4 Students will understand the basic properties of nucleus, know about Nuclear Forces and N Reactions which helps in defining the type of nuclear reaction.	ıclear
CO5 Students will gain basic knowledge of particle physics and ability to outline the physical orig particle physics.	ins of
10. Unit wise detailed content	
Unit-1 Number of lectures = 08 Title of the unit: Crystal Structure	
Lattice translation vectors and lattice, Symmetry operations, Basis and Crystal structure, Primitive Lattice cell, Two-dimens lattice types, systems, Number of lattices, Number of Lattices, Index system for crystal planes, Miller indices, Simple cr structures, NaCl, hcp, diamond. Bragg's law, experimental diffraction method, Laue method, rotating crystal method, powder method,	ystal
Unit-2 Number of lectures =08 Title of the unit: Crystal Bonding and Lattice Structure	
Crystal of inert gases, Van der Walls-London interaction, repulsive interaction, Equilibrium lattice constants, Cohesive en compressibility and bulk modulus, ionic crystal, Madelung energy, evaluation of Madelung constant, Covalent crystals, Hydro bonded crystals, Atomic radii.	
Unit-3 Number of lectures = 08	
Hall effect (metals and semiconductors), Origin of band theory, Kronig-Penney model, Number of orbitals in a band, conductor, S conductor and insulators, Effective mass, Concept of holes.	emi-
Unit-4Number of lectures = 08Title of the unit: Nuclear Physics	
General Properties of Nucleus: Brief survey of general Properties of the Nucleus, Mass defect and binding energy, charges, Siz	e, Spin
and Magnetic moment. Nuclear Forces: Saturation phenomena and Exchange forces, Deuteron ground state properties.	
Nuclear Reactions: Nuclear reactions and their conservation laws, Cross section of nuclear reactions, Theory of fission (Quality	tive).
Nuclear reactors and Nuclear fusion.	
Unit-5Number of lectures = 08Title of the unit: Particle Physics	
Basic particle interactions (gravitational, Electromagnetic, week and strong interactions), Basic classification based on rest mass and half-life, particles and antiparticles, idea of resonances, conservation rules in fundamental interactions, determination of spin	
parity of pions, strange particles.	
11. CO-PO mapping	
	PO6 P
CO1Students will be able to recognize the different crystal structures3112and understand basic crystallography.	1 1

CO2	Students will gain ability to describe the different physical mechanisms involved in crystal binding identifying the repulsive and attractive interactions and correlates these with the atomic	3	1	2	3	1	
CO3	Students will apply the knowledge obtained to make a judicious choice of a solid in terms of its desired property.	3	1	2	3	1	
CO4	Students will understand the basic properties of nucleus, Nuclear Forces and Nuclear Reactions.	3	1		2	1	
CO5	Students will gain basic knowledge of particle physics.	3	1		2	1	T
	3: Strong contribution, 2: Average contribution, 1: I	low cont	ribution	1			
2. Brief des	cription of self learning / E-learning component						_
2 D 1							
	commended:						
	Babbar, "Solid State Physics" (S. Chand).						
	, "Introduction to Solid State Physics"- Vth Edition (John Wiley & Sons).						
TT C M	nni and G. K. Mehta. "Introduction to Modern Physics" (Affiliated East-W	ast Drage	1000)				

- H. S. Mani and G. K. Mehta, "Introduction to Modern Physics" (Affiliated East-West Press-1989). 3.
- A. Beiser, "Perspectives of Modern Physics" (McGraw-Hill). Martin, B.R. and Shaw, Particle Physics (John Wiley). 4.
- 5.

1. Name of the Departmen	nt: Physics					
2. Course Name	Applied Electronics			L	Т	Р
3. Course Code	PY305			3	1	0
4. Type of Course (use tic	k mark)	Core ()	Foundati	on Course ()	Departme	ntal Elective ($$)
5. Pre-requisite (if any)	10+2 with Physics	6. Frequency (use tick marks)	Even (1)	Odd ()	Either Sem ()	Every Sem ()
7. Total Number of Lectu						
Lec	tures = 30	Tutorials = 10			Practical = Nil	
explore subject into their resp 9. COURSE OUTCOMES (r comp	,
COURSE OUTCOME (CO)		ATTRIBU	TES		
C01	Students will gain an und	erstanding of modern physics	and characterizat	tion of semiconduc	ctor based electronic of	levices.
CO2	Students will be able to re	alize the important concepts of	f advance electro	onics related to bip	oolar junction transist	ors.
C03		erstanding of advanced conce ifications and effect of externa			asing circuits for sma	ll and large scale signal
CO4	Students will learn abou industrial and commercial	t the high switching semicor applications.	ducting devices	like FETs and M	MOSFETs for design	ing power supplies for
	Students will learn about	the Power electronic devices	like the UJT, T	RIAC, etc. and de	signing Integrated Ci	rcuits for fabrication of
C05	high yield monolithic ICs					
CO5 10. Unit wise detailed conten	high yield monolithic ICs					
10. Unit wise detailed conte	high yield monolithic ICs	Title of the unit: Semic	onductor and p	-n junction diode		
10. Unit wise detailed content Unit-1 Number Diffusion of minority carriers Depletion layer, Junction Pot	high yield monolithic ICs	Title of the unit: Semic n metals and semiconductors ield and Capacitance of deple	Junctions betwee tion layer, Forw	en metal and semic ard A.C. and D.C.	conductors, Semicond resistance of junctio	n, Reverse Breakdown,

Transistor parameters, base width modulation, transit time and life-time of minority carriers, Base- Emitter resistance Collector conductance, Base spreading resistance, Diffusion capacitance, Reverse feedback ratio, Equivalent circuit for transistors, Basic model, hybrid model and Y parameter equivalent circuit, Input and output impedances.

Unit-3	Number of lectures = 08	Title of the unit: Transistor-II

Current and Voltage gain, Biasing formulae for transistors, Base bias, emitter bias and mixed type bias and mixed type biasing for small and large signal operation, Transistor circuit application at law frequencies, their AC and DC equivalent for three different modes of operation, Large signal operation of transistors, Transistor Power amplifiers, Class A and B operation, Maximum power output Effect of temperature, heat sinks, thermal resistance Distortion in amplifiers, cascading of stages, Frequency response, Negative and positive feedback in transistor amplifiers.

 Unit-4
 Number of lectures = 08
 Title of the unit: Field effect transistors and Power Supplies

 Field effect transistors and their characteristics, biasing of FET, use in preamplifiers, MOSFET and their simple uses. Electronically regulated low and high voltage power supplies, Inverters or battery operated equipments. Phototransistors, Silicon Controlled rectifiers.

 Unit-5
 Number of lectures = 08
 Title of the unit: Power Electronics and Integrated Circuits

 Triac Construction, Operation and Characteristics, Unijunction Transistors (UJT), its characteristics, IC-classification, Making monolithic ICs, IC-fabrication of components on monolithic IC, IC packings, IC symbols.

11. CO-PO Mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	Students will gain an understanding of modern physics and characterization of semiconductor based electronic devices.	3	2	1	2	1	1	3
CO2	Students will be able to realize the important concepts of advance electronics related to bipolar junction transistors.	3	2	1		2	1	3
CO3	Students will gain an understanding of advanced concepts of transistors and related to biasing circuits for small and large scale signal conditioning, power amplifications and effect of external factors in transistor operations.	3	2	1		2	1	3
CO4	Students will learn about the high switching semiconducting devices like FETs and MOSFETs for designing power supplies for industrial and commercial applications.	3	2	1		1	1	3
CO5	Students will learn about the Power electronic devices like the UJT, TRIAC, etc. and designing Integrated Circuits for fabrication of high yield monolithic ICs.	3	2	1	1	2	1	3
	3: Strong contribution, 2: Average contribution	on , 1: Low c	ontributi	on				
12. Brie	f description of self learning / E-learning component							
1. 2. 3.	https://nptel.ac.in/courses/117/107/117107095/ https://nptel.ac.in/courses/108/101/108101091/ https://nptel.ac.in/courses/117/103/117103063/							

13. Books recommended:

1. B. G. Streetman; "Solid State Electronic Devices", UK Edition (Prentice-Hall of India. New Delhi, 1986).

2. W. D. Stanley; "Electronic Devices, Circuits and Applications" (Prentice-Hall, New Jersey, USA. 1988).

3. J. D. Ryder; "Electronics Fundamentals and Applications" IInd Edition (Prentice-Hall of India. New Delhi, 1986).

4. I. Millman and A. Grabel; "Microelectronics", International. Edition (McGraw-Hill Book Company, New York, 1988).

Core Courses

1. Name of the Department: Ph	ysics					
2. Course Name	Physics of Materials			L	Т	Р
3. Course Code	PY306			3	1	0
4. Type of Course (use tick man	·k)	Core ()	Foundat	ion Course ()	Departme	ntal Elective ($$)
5. Pre-requisite (if any)	10+2 with Physics	6. Frequency (use tick marks)	Even (√)	Odd ()	Either Sem ()	Every Sem ()
7. Total Number of Lectures, T	utorials, Practicals					
Lectures	= 30	Tutorials = 1	.0		Practical = Nil	
obtain quantitative relations which		ate course is to impart basic r research. After successfully				
	are very important for furthe	r research. After successfully				
obtain quantitative relations which their respective dimensions. 9. COURSE OUTCOMES (CO):	are very important for furthe	r research. After successfully		ourse, the student v		
obtain quantitative relations which their respective dimensions. 9. COURSE OUTCOMES (CO): <i>After the successful course compl</i>	are very important for furthe	r research. After successfully	y completion of c	ourse, the student v		
obtain quantitative relations which their respective dimensions. 9. COURSE OUTCOMES (CO): <i>After the successful course compl</i> COURSE OUTCOME (CO)	etion, learners will develop j	r research. After successfully	y completion of c	ourse, the student v		
obtain quantitative relations which their respective dimensions. 9. COURSE OUTCOMES (CO): <i>After the successful course compl</i> COURSE OUTCOME (CO) CO1	etion, learners will develop j To learn about crystal stru To introduce crystal impe	r research. After successfully following attributes:	y completion of c ATTRIBU es of crystals.	JTES		
obtain quantitative relations which their respective dimensions. 9. COURSE OUTCOMES (CO): <i>After the successful course compl</i> COURSE OUTCOME (CO) CO1 CO2	etion, learners will develop j To learn about crystal stru To introduce crystal impe To introduce the structure	r research. After successfully following attributes: acture and its fractures refection and elastic propertie	y completion of c ATTRIBU es of crystals.	JTES		

J nit-1		Number of lectures = 08	Title of the unit: Introduction	n						
lica and s	silicates, po	lymers, fullerenes.	Covalent bonding, Metallic bonding, Sec	•			÷	alline stat	es, crystal	symmetry
racture: 1 Unit-2	Ductile fra	Number of lectures =08	ess, Ductile-brittle transition, Protection Title of the unit: Crystal Im	Ŭ	, 0					
rystal Im		ns: Point, line, surface and volume imp	Price of the unit. Crystal in perfections, dislocations and their geome Rubber like elasticity, anelastic behavior	try, Disorde	r in polym	ers and nor	-crystalli			on
Unit-3		Number of lectures = 08	Title of the unit: Structure a	and Process	ing of Ma	terials				
	of metals an id glasses.	d alloys, structure of ceramics and gla	sses, structure of polymers, structure of	composites (qualitative	e). Brief int	roduction	of proces	ssing of m	etals, alloy
Unit-4		Number of lectures = 08	Title of the unit: Introduction	on to Nanon	naterials					
			rials. Methods to produce nanomaterials vires: classification, properties and applic				ications o	f nanoma	terials.	
		Number of lectures = 08	Title of the unit: Tools and							
ystallogr eparation		ticle size determination, Electron Mi ctron microscope, Difference between	Title of the unit: Tools and T croscopy: Scanning Electron Microsco TEM and SEM, Disadvantages of electr	py (SEM),						tive), sam
ystallogr eparation	n for an elec	ticle size determination, Electron Mi ctron microscope, Difference between	croscopy: Scanning Electron Microsco TEM and SEM, Disadvantages of electr	py (SEM),						tive), sam
rystallogr eparation . CO-PC COs	n for an elec O Mapping	ticle size determination, Electron Mictron microscope, Difference between	croscopy: Scanning Electron Microsco TEM and SEM, Disadvantages of electr	py (SEM), on microsco	pe, Atomi	e force mic	roscope (AFM) (qu	ialitative).	
rystallogr eparation . CO-PO COs CO1	n for an elec O Mapping To learn al	ctron microscope, Difference between	croscopy: Scanning Electron Microsco TEM and SEM, Disadvantages of electr	py (SEM), on microsco PO1	pe, Atomic PO2	e force mic PO3	roscope (AFM) (qu PO5	PO6	PO7
reparation I. CO-PC COs CO1 CO2	n for an elec O Mapping To learn al To introdu	ticle size determination, Electron Mictron microscope, Difference between Comparison Attribute bout crystal structure and its fractures	croscopy: Scanning Electron Microsco TEM and SEM, Disadvantages of electr s	py (SEM), on microsco PO1 3	pe, Atomic PO2 1	e force mic PO3 1	roscope (AFM) (qu PO5 2	PO6 1	PO7 1
rystallogr eparation . CO-PC COs CO1 CO2 CO3	n for an elec O Mapping To learn al To introdu To introdu	bout crystal imperfection and elastic pro	croscopy: Scanning Electron Microsco TEM and SEM, Disadvantages of electr s perties of crystals. mics and glasses and their processing.	py (SEM), on microsco PO1 3 3	PO2 1 1	PO3 1 2	roscope (AFM) (qu PO5 2 2 2	PO6 1 1	PO7 1 1
ystallogr eparation . CO-PC COs CO1 CO2 CO3 CO4	n for an elec D Mapping To learn al To introdu To introdu To introdu	Attribute size determination, Electron Mic teron microscope, Difference between Attribute bout crystal structure and its fractures ace crystal imperfection and elastic pro- tice the structure of metals, alloys, cera	croscopy: Scanning Electron Microsco TEM and SEM, Disadvantages of electr s perties of crystals. mics and glasses and their processing.	py (SEM), on microsco PO1 3 3 3 3	pe, Atomic PO2 1 1 1	PO3 1 2	roscope (AFM) (qu PO5 2 2 2 2 2	PO6 1 1 1	PO7 1 1

- 13. Books recommended:
- Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.) Introduction to Solids: L.V. Azaroff (Tata McGraw Hill). 1.
- 2.
- 3. Solid State Physics: A.J. Dekker (Prentice-Hall).
- 4.
- 5.
- Essentials of Materials Science: A.G. Guy (McGraw Hill). Materials Science and Engineering: V. Raghvan (Prentice Hall). Elements of Materials Science and Engineering: L.H. Van Vlack (Addison-Wesley). Introduction to Nanotechnology: Charles P. Poole Jr, Frank J. Owens. 6. 7.

5. Cour 1. Type 5. Pre-r (if a	<mark>rse Name</mark> rse Code e of Course (use tick	Advanced Solid-State Physic	s (Elective 2)		-					
. Type 5. Pre-r (if a		DV200			L		Т			Р
5. Pre-r (if a	e of Course (use tick	PY308			3		1			0
(if a	(mark)	Core ()	Foundat	ion Course ()		Depar	tmental	Elective	(√)
. Tota	requisite any)	10+2 with Physics	6. Frequency (use tick marks)	Even (√)	Odd (0	Either Se	m ()	Every	Sem (
	l Number of Lecture	es, Tutorials, Practicals						·		
	Lectu	res = 30	Tutorials =	10		Pı	ractical =	Nil		
nd provie properties	ide a broader and dee s underlying fundamen SE OUTCOMES (C		s of today's semiconductor							
	SE OUTCOME (CO		nowing unionies.	ATTRIBUTH	S					
	C01	Students will gain an unders and vibrational dynamics.	tanding of the vibrations			them to	understar	d the cor	ncept of j	phono
	CO2	Students will gain knowledge	e of semiconductor and the	ir benefits over o	onductors and	l trying to	improve	upon thes	se qualitie	es.
	CO3	Students will gain an underst understanding about Capacito							or. It will	help i
	CO4	Students will gain an underst	anding of different kinds o	f magnetic mate	ial and it uses	š.				
	CO5	Students will be able to evalute them.	ate the optical properties of	of the material ar	d will create	own under	standing	approach	es to the	findin
0. Unit v	wise detailed content	;								
Un	nit-1 Number	of lectures = 08	Title of the unit: Elen	entary Lattice	Dvnamics					
e phonon Un assifying	spectrum in solids, D nit-2 Number materials as semicor	nductors, Chemical bonds in sem	nd Debye theories of speci Title of the unit: Semic niconductors, Mechanism	fic heat of solids onductor Physic of current flow,	, T ³ law. : s Forbidden, va	alence and	conducti	on bands	, Intrinsi	c and
niconduc	ctor.	er concentration and Fermi leve				Fermi leve	el and co	onductivit	y of ext	rinsic
		of lectures = 08 d, Electric susceptibility, Polariz	Title of the unit: Diele			1 0	·	1) C1	. 1.4	C
etric pola		dependence of ionic polarizabil								
		of lectures = 08	Title of the unit: Magn							
		dia, para, ferri and ferromagneti ie law, Weiss's theory of ferroma						, Quantu	m mecha	inical
		of lectures = 08		bir of B-IT Curve,	ilysteresis all	u energy it	555.			
assical M	Iodel-Drude model, id	onic conduction, Optical refractive escence, LED, Photo detector, Ph		etric constant, O	otical absorpti	on in meta	als, semic	onductor	s and ins	ulators
. CO-PO) mapping									
COs		Attributes		PO1	PO2	PO3	PO4	PO5	PO6	PO
CO1	lattice which determ	understanding of the dispersion ine how angular frequency va- teat with temperature.				1		1	2	
coz ^s		to evaluate the band gap, carrier	concentration and Fermi le	evel of 3		2		3	2	2
CO3		the own understanding of dielect	ric material and their prop	perties 3		2		3	2	2
CO4		n understanding of different kir	nds of magnetic material	and it 3		1		2	2	2
CO5	Students will be able	to evaluate the optical propertie	s of the material and will	create 3		2		3	2	2
	1 0 ⁴ 1		ution, 2: Average contrib	oution, 1: Low c	ontribution		1		1	<u> </u>
2. Brief	description of self le	arning /E-learning component	-							

13. Books recommended:

- Introduction to Solid State Physics by Charles Kittel (Willey Publication). Elements of Solid-State Physics by Puri and Babbar (S. Chand). Solid State Physics by S. O. Pillai (New Age International). 1.
- 2. 3.

1.	Name of the De	epartment: Mathematics					
2.	Course Name	Statics & Dynamics			L	т	Р
3.	Course Code	, MT305			3	1	0
4.	Type of Course		Core (🛛)	DSE ()	AEC ()	SEC ()	OE ()
	Pre-requisite	10+2 with	6. Frequency	Even ()	Odd (2)	Either Sem ()	Every Sem ()
5.	(if any)	Mathematics	(use tick marks)	Lven()	Oud (🗉)	Littler Sell ()	Lvery Sent ()
7.	Total Number o	of Lectures, Tutorials, Pract	icals	1	1	1	
Lec	tures = 30		Tutorials = 10		Practical =	Nil	
suc 9. CO Afte	cessful completion DURSE OUTCOM In the successful c	ourse completion, learners	ill be able to explor	e subject int	to their resp		
CO	URSE OUTCOME	(CO) ATTRIBUTES					
	CO1		normal directions.	They will a	lso study Sir	nple harmonic m	transverse directions and otion in various situations
	CO2	Students will gain an and cycloidal only).	understanding of N	Notion of bo	odies in resis	sting medium, Co	nstrained motion (circula
	CO3	Students will gain an and also study about	-				ane curves, Rocket motion dimensions.
	CO4	Students will create t Stable and unstable e		-	imon catena	ry, Centre of grav	vity and get knowledge o
	CO5	Students will learn al plane.	bout Forces in thre	e dimensio	ns, Poinsot's	s central axis, Wr	enches, Null line and nul
10.	Unit wise detail	ed content					
Un	it-1 Nu	umber of lectures = 08	Title of the uni	t:			
		tion along radial and transv al directions, Simple harmo		-	r laws of for	ces, Earth attracti	on, Elastic strings
Un	it-2 Nu	umber of lectures =08	Title of the unit	:			
Mot	ion in resisting m	edium, Constrained motior	(circular and cyclo	idal only).			
viot		umber of lectures = 08	Title of the unit				
Un							
Un		nd rough plane curves, Rock	et motion, Central	orbits and K	epler's law,	Motion of a partion	cle in three dimensions.

Common catenary, Centre of gravity, Stable and unstable equilibrium, Virtual work.

Unit-5 Number of lectures = 08 Title of the unit:

Forces in three dimensions, Poinsot's central axis, Wrenches, Null line and null plane.

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Students will be able to understand Velocity and acceleration along radial and transverse directions and along Tangential and normal directions. They will also study Simple harmonic motion in various situations and about Motion under other laws of forces, Earth attraction, Elastic strings.	2	2	2	1	1	1	2
CO2	Students will gain an understanding of Motion of bodies in resisting medium, Constrained motion (circular and cycloidal only).	3	2	2	1	1	1	2
CO3	Students will gain an understanding of motion of particle on smooth and rough plane curves, Rocket motion and also study about Central orbits and Kepler's law, Motion of a particle in three dimensions.		2	2	1	1	1	2
CO4	Students will create the own understanding of Common catenary, Centre of gravity and get knowledge of Stable and unstable equilibrium, Virtual work.	3	2	2	1	1	1	2
CO5	Students will learn about Forces in three dimensions, Poinsot's central axis, Wrenches, Null line and null plane.	3	2	2	1	1	1	2
	3 Strong contribution, 2 Average contribution , 1	Low c	ontrib	ution	1	1		
12. E	Brief description of self learning / E-learning component							
2. htt 3. htt	ps://nptel.ac.in/courses/112/106/112106180/ ps://www.mathcity.org/bsc/notes_of_mechanics/tariq_mahmood_qadri ps://www.fisica.net/mecanicaclassica/introduction_to_statics_and_dynamics ps://www.msuniv.ac.in/Download/Pdf/2c2167ab44cf4fc	s_by_r	udra_	pratap	.pdf			
13. E	Books recommended:							
2. S.L 3. J.L.	 Verma - A Text Book on Statics., Pothishala Pvt. Ltd., Allahabad Loney - An Elementary Treatise on the Dynamics of a Particle and of Rigid Bo Synge & B.A. Griffith - Principles of Mechanics, Tata McGraw-Hill, 1959. Pathan: Statics 	odies, ł	Kalyan	i Publi	shers, I	New De	elhi.	
5. Jho	onson and Beer: Vector Mechanics for Engineers							

6. Zafar Ahsan: Lectures Notes on Mechanics

2.	Course Name	Analysis				L	т	Р
3.	Course Code	MT306	MT306			3	1	0
4.	Type of Course (use tick mark)		Core (?)		DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)	B.Sc Second year	6.	Frequency (use tick marks)	Even (🛛)	Odd ()	Either Sem ()	Every Sem ()
7.	Total Number of Lecture	s, Tutorials, Practicals			1	1		
Lee	Lectures = 30			torials = 10		Practical = Nil		

8. COURSE OBJECTIVES: 1. This is an introductory course on analysis for mathematics students. The aim of this course is to introduce and develop basic analytic concepts of limit, convergence, integration and differentiation.

2. This course is aimed to provide an introduction to the theories for functions of a complex variable. The concepts of analyticity, Cauchy-Riemann relations and harmonic functions are then introduced.

COU	IRSE OUTCOME	E (CO)	ATTRIBUTES										
CO1			Describe fundamental properties of the real numbers that lead to the formal development of real analysis.										
со2 со3			Demonstrate an unde and integration;	erstanding of limits and	how they	are use	ed in sec	quences	, series	, differ	entiatio		
			Understand and be able to use notions of convergence involving sequences of functions, including the difference between pointwise and uniform convergence. Apply the Weierstrass M-test and the uniform convergence theorem for integrals to examples.										
	CO4		Demonstrate understanding of the basic concepts underlying complex analyis.										
	CO5		Find Laurent series about isolated singularities, and determine residues and use the residue theorer to compute several kinds of real integrals.										
10. Unit	t wise detailed	content											
		-											
			er of lectures = 08	Title of the unit: To		-			_		_		
Unit-1 Axiomat Neighbo theorem	tic study of orhood, Interio	real nun	nbers, Completeness	Title of the unit: To property in <i>R</i> , Archin d closed sets, Derived	medean	property	, Coun						
Axioma Neighbo theorem	tic study of orhood, Interio	real nun r points, l	nbers, Completeness	property in R, Archin	medean sets, Den	property se sets,	7, Coun Perfect	sets, B	olzano	– We			
Axiomat Neighbo theorem Unit-2 Sequenc	ntic study of orhood, Interio n. ce of real numl	real nun r points, l Numbe bers, Subs	nbers, Completeness Limit points, Open an er of lectures =08	property in <i>R</i> , Archin d closed sets, Derived Title of the unit: Ho d monotonic sequences,	medean sets, Den	property se sets, phism a	y, Coun Perfect	sets, B	olzano axioms	– We	ierstrass		
Axiomat Neighbo theorem Unit-2 Sequenc	ntic study of orhood, Interio n. ce of real numl	real nun r points, l Numbe bers, Subs chy gener	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an	property in <i>R</i> , Archin d closed sets, Derived Title of the unit: Ho d monotonic sequences,	medean sets, Den meomor Converg	property se sets, phism a gent seq	y, Coun Perfect	sets, B	olzano axioms	– We	ierstrass		
Axiomat Neighbo theorem Unit-2 Sequenc Cauchy Unit-3 Jniform	ttic study of orhood, Interio h. ce of real numl sequence, Cau convergence of	real nun r points, l Numbe bers, Subs chy gener Numbe of sequence	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun	Title of the unit: Ho d monotonic sequences,	medean sets, Den meomor Converg mpactne I test, Al	property ise sets, phism a gent seq ss pel's an	d Diricl	sets, B aration a Cauchy hlet's t	axioms 's theo	- We	ierstrass on limit,		
Axiomat Neighbo theorem Unit-2 Sequenc Cauchy Unit-3 Jniform	ttic study of orhood, Interio h. ce of real numl sequence, Cau convergence of	real nun r points, l Numbe bers, Subs chy gener Numbe of sequence erties of co	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun	property in R , Archinal closed sets, Derived Title of the unit: Ho d monotonic sequences, gence. Title of the unit: Co ctions, Weierstrass - M	medean sets, Den meomor Converg mpactne I test, Al ng of sign	property ise sets, phism a gent seq ss pel's an n of deri	d Diricl	sets, B aration a Cauchy hlet's t	axioms 's theo	- We	ierstrass on limit,		
Axiomat Neighbor theorem Unit-2 Sequenc Cauchy Unit-3 Juiform ntermedi Unit-4 unctions	ntic study of orhood, Interio n. ce of real numl sequence, Cau convergence c iate value prope	real nun r points, l Numbe bers, Subs chy gener Numbe of sequence erties of co Numbe ariables, I	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun ontinous functions, Un er of lectures = 08 Limit, Continuity and o	property in R , Archinal closed sets, Derived Id closed sets, Derived Title of the unit: Ho d monotonic sequences, gence. Title of the unit: Co ctions, Weierstrass - M iform continuity, Meaning	medean sets, Den meomor Converg mpactne I test, Al ng of sign	property ise sets, phism a gent seq ss pel's an n of deri ness	v, Coun Perfect and sepa uences, d Diricl ivative, 1	sets, B aration a Cauchy hlet's t Darboux	axioms axioms a's theo test, Bo	- We prems o punded em	n limit, ness an		
Axiomat Neighbor theorem Unit-2 Sequenc Cauchy Unit-3 Juiform ntermedi Unit-4 unctions	tic study of orhood, Interio n. ce of real numb sequence, Cau convergence c iate value propo	real nun r points, l Numbe bers, Subs chy gener Numbe of sequence erties of co Numbe ariables, I function.	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun ontinous functions, Un er of lectures = 08 Limit, Continuity and o	property in R , Archinal closed sets, Derived Id closed sets, Derived Title of the unit: Ho d monotonic sequences, gence. Title of the unit: Co ctions, Weierstrass - M iform continuity, Meani Title of the unit: Co	medean sets, Den Converg mpactne I test, Al ng of sign onnected uations ,	property ise sets, phism a gent seq ss pel's an n of deri ness Analyti	v, Coun Perfect and sepa uences, d Diricl ivative, 1	sets, B aration a Cauchy hlet's t Darboux	axioms axioms a's theo test, Bo	- We prems o punded em	n limit, ness an		
Axiomat Neighbo theorem Unit-2 Sequenc Cauchy Unit-3 Unitorm ntermedi Unit-4 unctions construct Unit-5	tic study of orhood, Interio h. ce of real numb sequence, Cau convergence of iate value propo s of Complex v tion of analytic	real num r points, l Numbe bers, Subs chy gener Numbe of sequence erties of co Numbe ariables, I function.	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun ontinous functions, Un er of lectures = 08 Limit, Continuity and of er of lectures = 08	property in R , Archinal closed sets, Derived Id closed sets, Derived Title of the unit: Ho d monotonic sequences, gence. Title of the unit: Co ctions, Weierstrass - M iform continuity, Meani Title of the unit: Co differentiability, CR – eq	medean sets, Den meomor Converg mpactne I test, Al ng of sign onnected uations , oduct To	property ise sets, phism a gent seq ss pel's an 1 of deri ness Analyti pology	d Diricl	sets, B aration a Cauchy hlet's t Darbouz	axioms axioms i's theo test, Bo test, Bo test, Bo	- Wei orems of ounded em	ness an		
Axiomat Neighbo theorem Unit-2 Sequenc Cauchy Unit-3 Unitorm ntermedi Unit-4 Cunctions Construct Unit-5 Cauchy fi	tic study of orhood, Interio h. ce of real numl sequence, Cau convergence of iate value prope s of Complex v tion of analytic	real num r points, l Numbe bers, Subs chy gener Numbe of sequence erties of co Numbe ariables, I function. Numbe	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun ontinous functions, Un er of lectures = 08 Limit, Continuity and of er of lectures = 08	property in R , Archinal closed sets, Derived in the closed set in	medean sets, Den meomor Converg mpactne I test, Al ng of sign onnected uations , oduct To	property ise sets, phism a gent seq ss pel's an 1 of deri ness Analyti pology	d Diricl	sets, B aration a Cauchy hlet's t Darbouz	axioms axioms i's theo test, Bo test, Bo test, Bo	- Wei orems of ounded em	n limit, ness an		
Axiomat Neighbo theorem Unit-2 Sequenc Cauchy Unit-3 Unitorm ntermedi Unit-4 Cunctions Construct Unit-5 Cauchy fin nalytic fi	tic study of orhood, Interio h. ce of real numl sequence, Cau convergence of iate value prope s of Complex v tion of analytic	real num r points, l Numbe bers, Subs chy gener Numbe of sequence erties of co Numbe ariables, I function. Numbe	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun ontinous functions, Un er of lectures = 08 Limit, Continuity and of er of lectures = 08 uchy integral formula	property in R , Archinal closed sets, Derived in the closed set in	medean sets, Den meomor Converg mpactne I test, Al ng of sign onnected uations , oduct To	property ise sets, phism a gent seq ss pel's an 1 of deri ness Analyti pology	d Diricl	sets, B aration a Cauchy hlet's t Darbouz	axioms axioms i's theo test, Bo test, Bo test, Bo	- Wei orems of ounded em	n limit, ness an		
Axiomat Neighbo theorem Unit-2 Sequenc Cauchy Unit-3 Unitorm ntermedi Unit-4 Cunctions Construct Unit-5 Cauchy fin nalytic fi	ttic study of orhood, Interio h. ce of real numl sequence, Cau convergence of iate value prope s of Complex v tion of analytic fundamental the function, Singu	real num r points, l Numbe bers, Subs chy gener Numbe of sequence erties of co Numbe ariables, I function. Numbe	nbers, Completeness Limit points, Open ar er of lectures =08 sequence, Bounded an al principle of converg er of lectures = 08 ces and series of fun ontinous functions, Un er of lectures = 08 Limit, Continuity and of er of lectures = 08 uchy integral formula	property in R , Archinal closed sets, Derived in the closed set in	medean sets, Den meomor Converg mpactne I test, Al ng of sign onnected uations , oduct To	property ise sets, phism a gent seq ss pel's an 1 of deri ness Analyti pology	d Diricl	sets, B aration a Cauchy hlet's t Darbouz	axioms axioms i's theo test, Bo test, Bo test, Bo	- Wei orems of ounded em	ness an		

3

3

2

2

1

1

3

3

1

1

1

1

Demonstrate an understanding of limits and how they are used in

Understand and be able to use notions of convergence involving sequences of functions, including the difference between pointwise

Apply the Weierstrass M-test and the uniform convergence theorem

sequences, series, differentiation and integration.

and uniform convergence.

for integrals to examples.

CO2

CO3

со	4 Demonstrate understanding of the basic concepts underlying complex analyis.	3	1	1	2	1	1
со	Find Laurent series about isolated singularities, and determineresidues and use the residue theorem to compute several kinds of real integrals.		1	1	2	1	1
	3 Strong contribution, 2 Average contribution	, 1 Low o	contribu	tion			
12. 8	Brief description of self learning / E-learning component						
1.	https://swayam.gov.in/nd1_noc20_ma03/preview_						
2.	https://www.youtube.com/watch?v=gJ1pYz1k0qM						
4.	https://www.youtube.com/watch?v=t9xW7UaZwZ0						
13.	Books recommended:						

- 1. Robert G. Bartle and Donald R. Sherbert : Introduction to Real Analysis, Wiley Student Edition.
- 2. S. C. Malik and S. Arora : Mathematical analysis, Wiley Eastern Ltd.

3. R. V. Churchill and J.W. Brown: Complex Variable & Applications, McGrow Hill, International Book Company, London Goyal and Gupta : Function of a Complex Variable, Pragati Prakashan.

1. Name of the Department: N	lathematics											
2. Course Name	BASIC MATHEMATICAL MOD	DELING		L	Т			Р				
3. Course Code	MT307			3	1			0				
4. Type of Course (use tick ma	rk)						FC	C()				
5. Pre-requisite (ifany)	+2 with Mathematics	6. Frequency (use tick marks)	Even (√)	Odd ()	Either	Sem ()	Evei	ry Sem ()				
7. Total Number of Lectures, T	utorials, Practicals	·	•	•								
Lectur	es = 30	Tutorials = 10			Practical =	Nil						
8. COURSE OBJECTIVES: The c	ourse is aimed to develop the	skills in mathematics specially in cal	culus which is	necessary for groor	ning them	into suc	cessful	scienc				
graduate. The topics introduce	d will serve as basic tools for sp	ecialized studies in science field.										
9. COURSE OUTCOMES (CO):												
After the successful course com	pletion, learners will develop fo											
COURSE OUTCOME (CO)			IBUTES									
C01	Assess and articulate what typ	e of modeling techniques are appro	priate for a give	en physical system.								
CO2	Construct a Mathematical mod	del of a given physical system and ar	alyze it.									
CO3	Make predictions of the behav	vior of a given physical system based	on the analysis	s of its Mathematica	l Model.							
CO4	Demonstrate understanding or elementary dynamical systems	f powerful mathematical tools such a s theory	as calculus of se	everal variables, diff	erential eq	uations	and					
CO5	Recognize the power of mathe	ematical modeling and analysis and b	e able to apply	their understandin	g to their fu	urther st	udies.					
10. Unit wise detailed content												
Unit-1	Number of lectures	08										
		s of mathematical modeling, classifi			, character	istics of	mather	matica				
¥		gonometry and calculus. Limitations	of methodical i	modeling.								
Unit-2	Number of lectures	08										
0 0	, , ,	first order linear growth and decay	models, compa	artment models, ma	ithematical	modelir	ig in dy	namic				
through first order ODE. Mathen Unit-3	Number of lectures											
		08	• ••• • • • • • • • • • •	h waters of ODE A			line of a					
motion, Planetary motions and r		modeling of epidemic, Compartmen	it model throug	in system of ODE. IV	lathematic	ai wode	ling of c	circula				
Unit-4	Number of lectures	08										
	omics, in medicine, Arms race	e, Battles, international trade in te	rms of system	of ODE and dynar	nic through	n ordina	ry diffe	erentia				
Unit-5	Number of lectures	08										
		ed, basic theory, modeling in Econo	mics and finar	nce modeling in po	nulation d	mamics	and Ge	enetics				
	-	eling through difference equations		ice, modeling in po		mannes						
11. CO-PO mapping												
COs												
		Attributes		PO1	PO2 PO3	PO4	PO5	PO6				
Assess and articula	te what type of modeling techr	niques are appropriate for a given ph	nysical system.	3	2 2	1	1	3				

	CO2	Construct a Mathematical model of a given physical system and analyze it.	2	2	2	1	1	2
	соз	Make predictions of the behavior of a given physical system based on the analysis of its Mathematical Model.	3	2	3	1	1	2
	CO4	Demonstrate understanding of powerful mathematical tools such as calculus of several variables, differential equations and elementary dynamical systems theory	3	2	3	1	1	3
	CO5	Recognize the power of mathematical modeling and analysis and be able to apply their understanding to their further studies.	3	2	1	1	1	2
		3 Strong contribution, 2 Average contribution, 1 Low contribution						
12	. Brief d	escription of self-learning / E-learning component						
1.	https:/	/www.youtube.com/watch?v=-uCwgZUz51o						
2.	https:/	/nptel.ac.in/courses/111107113/						
3.	https:/	/study.com/academy/lesson/types-of-mathematical-models.html						
4.	https:	//www.frontiersin.org/articles/10.3389/fgene.2015.00354/fullpdf						
5.	https:/	/www.youtube.com/watch?v=jV4Hlh8gHLs						
13.	Books r	ecommended:						
1.	J.N. Ka	pur: Mathematical modeling Wiley Eastern limited, 1990.						
2.	Princip	les of Mathematical Modeling, 2nd Edition, Clyve L. Dym, Elsevier Academic Press.						
3.	A Cour	se in Mthematical Modeling, Douglus Munee						
4.	Conce	ots in Mathematical Modeling, Walter J Meyer						

2. Course	Linear Programmir	ng		L	т	Р
3. Course	MT308					0
4. Type of C	ourse (use tick mark) Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre- requisite		6. Frequency (use tick marks)	Even(√)	Odd	Either Sem ()	Every Sem ()
7. Total Nur	nber of Lectures, Tut	orials				
Lectures = 30		Tutorials = 10	Pra	ctical = N	il	
Stochastic line beginner cour	ear programming. To		ptimal anal	ysis and		Programming, Multi-objective as on making problem. This is a gree
fter the succe	• •	<i>ion, learners will develop follo</i> FES	wing attrib	outes:		
C01		on of real life problems in the lated LPP.	form of lir	near prog	gramming prob	lem and various method to solv
CO2	Can obtai	n the problem when changing	the parame	ters of th	ne problem in l	ater stages.
CO3	Understa problems		programn	ning prol	blems with dif	ferent methods of solving thos
CO4		nd Multi-objective and Stoch istic in order to solve efficiently		amming	problem and	various methods to make ther
CO5	Learn deo	ision making problems under v	arious envi	ronment	explicitly the t	heory of games.
10. Unit wise	detailed content					
Unit-1	Number of lectur	es Title of the unit:				
		problem, simplex algorithm, F ethod. Bounded variable simpl		relations	ship, Economic	al interpretation of the dual, Du

Sensitivity Analysis: Change in values of objective function coefficient, Change in right hand side values, Change in coefficient of coefficient, Adding a new product and adding a constraint

Unit-3 Number of lectures Title of the unit:

Integer programming formulation, all integers and mixed integer programming problems, Gomory's cutting plane algorithm, Branch and bound algorithm. Knapsack problem

Unit-4 Number of lectures Title of the unit:

Stochastic programming models, Chance constraints optimization, two stage problems. Goal Programming methods and applications

Unit-5 Number of Title of the unit:

Decision Theory: Introduction, Elements of decision problem, Types of decision making environment, Decision tree. Game Theory: Basic definitions, Two-person Zero-sum games, Pure and mixed strategy, Principle of Dominance, Graphical method, Solution of games by linear programming method.

11. CO-PO mapping

Attributes	PUI	PUZ	PU3	PO4	PU5	PU6	PO7
		2	1	2	2	1	3
Can obtain the problem when changing the parameters of the problem in later stages.	3	1	1	1	2	1	3
Understanding pure and mixed integer programming problems with different methods of solving those problems.	3	1	1	2	2	1	3
		2	3	1	1	1	3
Learn decision making problems under various environments explicitly the theory of games.	3	2	1	2	2	1	3
	 programming problem and various method to solve the formulated LPP. Can obtain the problem when changing the parameters of the problem in later stages. Understanding pure and mixed integer programming problems with different methods of solving those problems. Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently. Learn decision making problems under various 	formulated LPP. Can obtain the problem when changing the parameters of the problem in later stages. Understanding pure and mixed integer programming problems with different methods of solving those problems. Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently. Learn decision making problems under various 3	programming problem and various method to solve the formulated LPP.32Can obtain the problem when changing the parameters of the problem in later stages.31Understanding pure and mixed integer programming problems with different methods of solving those problems.31Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently.32Learn decisiona2	programming problem and various method to solve the formulated LPP.321Can obtain the problem when changing the parameters of the problem in later stages.311Understanding pure and mixed integer programming problems with different methods of solving those problems.311Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently.323Learn decision making problems under various321	programming problem and various method to solve the formulated LPP.3212Can obtain the problem when changing the parameters of the problem in later stages.3111Understanding pure and mixed integer programming problems with different methods of solving those problems.3112Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently.3231Learn decision making problemsunder various3212	programming problem and various method to solve the formulated LPP.32122Can obtain the problem when changing the parameters of the problem in later stages.31112Understanding pure and mixed integer programming problems with different methods of solving those problems.31112Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently.32311	programming problem and various method to solve the formulated LPP.321221Can obtain the problem when changing the parameters of the problem in later stages.311121Understanding pure and mixed integer programming problems with different methods of solving those problems.3111221Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently.3231111

12. Brief description of self learning / E-learning component

- 1. https://www.youtube.com/watch?v=TwAvQJAM9Hk
- 2. https://www.youtube.com/watch?v=M8POtpPtQZc
- https://www.youtube.com/watch?v=KLHWtBpPbEc
- https://www.youtube.com/watch?v=o-N0jFUpdWo
- https://www.youtube.com/watch?v=56-iiZEjqnU
- https://www.youtube.com/watch?v=LAC212ZwBB4
- https://www.youtube.com/watch?v=gkm6WljmbOk
- https://www.youtube.com/watch?v=EyVYAngxkPA
- https://www.youtube.com/watch?v=hibV5YbZvBw

Recommended Books:

- 1. Mokhtar S. Bazara, John J. Jarvis "Linear Programming and Network Flows" Fourth Edition. WILEY A John Wiley & Sons, Inc., Publication
- 2. H.A. TAHA "Operations Research- An Introduction" Pearson.
- 3. K.Swarup, P.K.Gupta and A. Manmohan, "Operations Research", S. Chand.
- 4. Hiller And Liebarman, "Introduction to Operations Research", McGraw Hill Company.
- 5. David K. J. Mtetwa, "Linear Programming" Paradise publishers, US